Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions.

نویسندگان

  • A S Belmont
  • Y Hu
  • P B Sinclair
  • W Wu
  • Q Bian
  • I Kireev
چکیده

How chromatin folds into mitotic and interphase chromosomes has remained a difficult question for many years. We have used three generations of engineered chromosome regions as a means of visualizing specific chromosome regions in live cells and cells fixed under conditions that preserve large-scale chromatin structure. Our results confirm the existence of large-scale chromatin domains and fibers formed by the folding of 10-nm and 30-nm chromatin fibers into larger, spatially distinct domains. Transcription at levels within severalfold of the levels measured for endogenous loci occur within these large-scale chromatin structures on a condensed template linearly compacted several hundred fold to 1000-fold relative to B-form DNA. However, transcriptional induction is accompanied by a severalfold decondensation of this large-scale chromatin structure that propagates hundreds of kilobases beyond the induced gene. Examination of engineered chromosome regions in mouse embryonic stem cells (ESCs) and differentiated cells suggests a surprising degree of plasticity in this large-scale chromatin structure, allowing long-range DNA interactions within the context of large-scale chromatin fibers. Recapitulation of gene-specific differences in large-scale chromatin conformation and nuclear positioning using these engineered chromosome regions will facilitate identification of cis and trans determinants of interphase chromosome architecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic plasticity of large-scale chromatin structure revealed by self-assembly of engineered chromosome regions

Interphase chromatin compaction well above the 30-nm fiber is well documented, but the structural motifs underlying this level of chromatin folding remain unknown. Taking a reductionist approach, we analyzed in mouse embryonic stem (ES) cells and ES-derived fibroblasts and erythroblasts the folding of 10-160-megabase pair engineered chromosome regions consisting of tandem repeats of bacterial a...

متن کامل

Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template

The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1-2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130-220 kb of genomic D...

متن کامل

Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers

In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin ...

متن کامل

Micron-scale coherence in interphase chromatin dynamics.

Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent acr...

متن کامل

SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs

Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cold Spring Harbor symposia on quantitative biology

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2010